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Abstract. The coupling to a (2+1)-background geometry of a quantized charged test particle in
a strong magnetic field is analysed. Canonical operators adapting to the fast and slow freedoms
produce a natural expansion in the inverse square root of the magnetic field strength. The
fast freedom is solved to second order. At any given time, space is parametrized by a pair
of conjugate operators and effectively behaves as the ‘phase space’ of the slow freedom. The
slow Hamiltonian depends on the magnetic field norm, its covariant derivatives and the scalar
curvature, and presents a peculiar coupling with the spin-connection.

1. Introduction

The dynamics of a charged particle in a given electromagnetic and gravitational background
is an important problem having implications in several areas of theoretical and mathematical
physics—from classical gravity to condensed matter and plasma physics to quantum field
theory. As a quite interdisciplinary example, it represents the first step to take in addressing
the study of a plasma around a compact astrophysical object or, more in general, in space and
cosmological phenomena [1]. Exact solutions are found when metric and electromagnetic
2-form share common symmetries. Various special cases have been worked out, especially in
two spatial dimensions, with particular emphasis on the underlying algebraic and analytical
structures [2]. Beyond symmetry, in spite of the apparent simplicity, the general problem
displays an extreme degree of complication. Classical motion is generally chaotic and one
has to be content with approximate analysis. Even like this, however, the task to set down
an appropriate perturbative expansion is not straightforward. The peculiar structure of the
electromagnetic interaction makes ordinary Hamiltonian perturbation theory not directly
applicable [3]. In the 1950s and 1960s, the urgency of the problem in classical applications,
especially in connection with the investigation of the Earth’s magnetosphere and in the
design of mirror machines for the confinement of hot plasma, motivated Bogoliubov, Kruskal
and others to formulate adiabatic perturbation theory directly in terms of the equations of
motion. This led Northrop and Teller to the familiar ‘guiding centre’ picture of the effective
dynamics of a charged particle in an inhomogeneous magnetic field in a flat spacetime
[4]. Modern applications, ranging from geodesic motion around charged black holes in
classical gravity to a two-dimensional system of non-relativistic electrons in quantum-Hall-
like devices to plasma in astrophysics and cosmology to the investigation of the coupling
with matter fields in toy models for quantum gravity, deal more in general with curved
backgrounds and require the extension of the perturbative analysis developed in classical
physics to the quantum-mechanical and field-theoretical context. To this task a whole
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canonical approach to the problem has to be developed. This is the aim of the present
investigation.

In this paper we address the subject by discussing the effective motion of a charged
particle in a (2+ 1)-curved background. This allows us to display the peculiar canonical
structure of the system better, avoiding complications arising from extra dimensions.
Moreover, the restriction is not just a mathematical artefact. The solution in two spatial
dimensions is indeed a key ingredient in the discussion of the relativistic four-dimensional,
as well as the non-relativistic three-dimensional, cases. From a rather different viewpoint
the problem is also equivalent to the investigation of the effective dynamics of a test particle
experiencing the ‘geometric gravitational’ force of Cangemi and Jackiw in a Wick-rotated
two-dimensional spacetime [5].

Our analysis is based on the canonical structure of the system and is essentially the same
for the classical and the quantum cases. For definiteness we consider the quantum case. The
classical limit may be obtained straightforwardly. The topology of spacetime is supposed
to be trivial—the direct product of a surface6 diffeomorphic to the plane and time—
so that all the local quantities automatically have a global definition; for example, Ricci
rotation coefficients define a spin-connection. Under these hypotheses it is always possible
to choose coordinates in such a way that the metric takes the formg00 = 1, g0µ = 0 and
gµν are arbitrary functions of time and spatial coordinates,µ, ν = 1, 2. We also assume the
electromagnetic field to be purely magnetic. Both relativistic and non-relativistic problems
reduce then to the study of the Hamiltonian of a charged particle on the curved surface6.

This paper is organized as follows. In section 2 we discuss the canonical structure
of the problem showing how the strong magnetic regime naturally produces an expansion
in the inverse square root of the field strength. In section 3 an adapted set of canonical
operators is introduced. This allows us to separate the fast freedom from the slow one,
identifying the adiabatic invariant of the system. The coupling with background geometry
is studied in section 4. Besides contributions depending on the scalar curvature and on
covariant derivatives of the magnetic field norm, we find a peculiar coupling with the
spin-connection. The theory is general as well as ‘Lorenz’ covariant. Our main result
is the effective Hamiltonian (20). The example of a particle on a conical surface in an
axisymmetric magnetic field decreasing as the inverse of the distance from the vertex is
presented in section 5. The last section contains our conclusions. In the appendix the
necessary technology for maximally simplifying the study of the adiabatic expansion is
summarized.

2. Charged particle on a curved surface

We consider a charged scalar particle on a two-dimensional surface6 in a strong magnetic
background. The surface is parametrized by arbitrary coordinatesxµ, µ = 1, 2, and its
geometry is given by the metric tensorgµν . The magnetic field is described by a closed
antisymmetric 2-formbµν . In both the non-relativistic and relativistic cases the discussion
of the dynamical problem reduces to studying the Hamiltonian

H = 1
2g
−1/25µg

µνg1/25ν. (1)

The kinematical momenta5µ = −i∂µ − l−2
B aµ have been introduced, [5µ,5ν ] = ibµν(x)

and the physical dimension of the field is re-adsorbed in the scale factorlB . The
wavefunction of the system is normalized with respect to the measure

√
g dx1 dx2. Our

analysis is based on the smallness of the magnetic lengthlB . Throughout our discussion we
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assume the background scalar curvatureR as well as the derivatives of the magnetic field
normb = √bµνbµν/2 to satisfy the conditions|R| � l−2

B , |4b/b| � l−2
B and|∇b/b| � l−1

B .
First, we focus on kinematics. In the absence of a magnetic interaction the essential

operators appearing in the description of the system are the coordinatesxµ and the
derivatives−i∂µ. These appear as a couple of conjugate variables, [xµ,−i∂µ] = iδµν .
Introducing the magnetic interaction replaces−i∂µ by the non-commuting5µ. In other
words, the magnetic background produces a twist of the canonical structure. This is made
explicit by transforming to Darboux coordinate framesξµ = ξµ(x) in which the magnetic
field strength takes the form

bµν(ξ) = l−2
B εµν (2)

(εµν is the completely antisymmetric tensor in two dimensions). The Darboux theorem
ensures the existence of a well defined atlas of such frames. In the new frames51 and
52 appear as reciprocally conjugate while their commutators with the coordinates are still
different from zero. On the other hand, [ξ1,51] and [ξ2,52] are order l2B compared
to [51,52]. This makes it clear that in the strong magnetic regime it is convenient to
abandon the description in terms ofξµ and−i∂µ introducing besides51 and52 a new pair
of canonical variables. These turn out to be the guiding centre operators4µ = ξµ+l2Bεµν5ν

(in this paper we adopt the notationεµν = εµν). Rescaling for convenience5µ by
5µ → lB5µ—and hence the magnetic field normb and the HamiltonianH by a factor
l2B—the fundamental commutation relation may finally be re-cast in the form

[51,52] = i [42, 41] = il2B. (3)

The presence of the small parameterlB in the second relation displays the guiding centre
operators as slow variables of the system. The physical interpretation of the new quantities
emerges by considering dynamics in the semiclassical regime [6, 7]: the5µ take into
account the rapid rotation of the particle while the4µ take into account the slow drift of
the centre of the orbit, the guiding centre, on the surface.

Having outlined the peculiar canonical structure, we come back to the dynamical
problem. This is in general of a certain complication†, the two freedoms of the system being
coupled by the metric backgroundgµν as well as by the magnetic field strengthbµν . Note
that even starting from a simple geometrical context, for example a flat one, transforming
to Darboux frames produces a quite complicated form of the interaction. Nevertheless,
whenever the curvature radii of the surface and the variation length scale of the magnetic
field may be considered larger than the magnetic lengthlB , it turns out to be possible to
perform an approximate analysis in quite general terms. We start, of course, from (1).
As a first technical step we rescale the wavefunction and Hamiltonian byψ → g1/4ψ

andH → g1/4Hg−1/4. This changes the integration measure from
√
g dx1 dx2 to dx1 dx2

making the Hamiltonian more symmetric and simplifying further manipulations. The second
step is that of adapting variables. We transform, therefore, to Darboux coordinate frames
according to the above kinematical discussion. The transformed metric tensor is denoted
by γµν . Observe that in these preferential frames the metric determinantγ is related to the
magnetic field norm byγ = b−2. Moreover, all the functions of the coordinates have now
to be evaluated inξµ = 4µ − lBεµν5ν producing a natural expansion of the Hamiltonian

† An exact solution of the problem is only possible when the metric and magnetic field share a common symmetry.
Typical examples are the Landau problem—motion on a plane in a uniform magnetic field—the motion on a
sphere in a monopole field and the motion on the Poincaré half-plane in a hyperbolic magnetic field [2]. The
exact (degenerate) ground state of the system may be obtained whenever the metric and magnetic 2-form define a
Kähler structure on the surface6 [8]. More general conditions require an approximate analysis.
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in the small parameterlB . Taking into account the rescaling of5µ, wavefunction and
Hamiltonian, and expanding inlB , (1) takes the form

l2BH =
1

2
γ µν5µ5ν − lB

2
(∂κγ

µν)εκρ5µ5ρ5ν

+ l
2
B

4
(∂κ∂λγ

µν)εκρελσ5µ5ρ5σ5ν − l
2
B

4

4b
b
+ l

2
B

8

|∇b|2
b2
+O(l3B) (4)

where the inverse metricγ µν , the magnetic field normb and all their derivatives are
evaluated in the guiding centre operators4µ.

3. Spinning and drifting

We first focus on the zero order of expansion (4) by discussing the truncated Hamiltonian
H(0) = 1

2γ
µν5µ5ν . This is quadratic in5µ with coefficients depending on the slow

variables4µ. It should therefore be possible to reduce the problem to a harmonic oscillator
up to higher orders inlB . To this task we consider the decomposition ofγ µν in terms
of the zwei-beineneiµ; γ µν = ei

µei
ν . We then introduce the ‘normalized zwei-beinen’

ni
µ = b−1/2ei

µ in such a way that

H(0) = 1
2[ni

µ(4)5µ]b(4)[ni
ν(4)5ν ] − 1

4ini
µ(4)b(4)ni

ν(4)εµν. (5)

It is clear that the new̄5µ recastingH(0) in a harmonic oscillator Hamiltonian should have
the form 5̄i = ni

µ(4)5µ + O(l2B). To obtain a genuine set of canonical variables—not
a perturbative one—we produce the rotation of5µ in the niµ directions by means of the
unitary transformation

U = exp{− 1
4iεµi [ln n]i

ν{5µ,5ν}}. (6)

The new canonical operators are defined by5̄i = δ
µ

i U5µU
† and 4̄µ = U4µU †. An

explicit expression as a power series inl2B may now be obtained to any order. As a
preparation for the next section we write the new variables to orderl2B . Introducing the
non-covariant rotation coefficientsρij ,k = nkµ(∂µniν)nνj we have

5̄i = niµ5µ − 1
8l

2
Bε

mnρi
k
,mρj

l
,nε

jhnk
κnh

µnl
λ(5κ5µ5λ +5λ5µ5κ)+O(l4B) (7)

4̄µ = 4µ − 1
4l

2
Bε

mnnm
µρj

l
,nε

jknk
κnl

λ(5κ5λ +5κ5λ)+O(l4B) (8)

where all the functions on the right-hand side are evaluated in4. In order to rewrite (5) in
terms of the new operators, these relations have to be inverted. The task is straightforward
yielding

ni
µ(4)5µ = 5̄i + 1

8l
2
Bε

mnρi
k
,mρj

l
,nε

jh(5̄k5̄h5̄l + 5̄l5̄h5̄k)+O(l4B) (9)

and

4µ = 4̄µ + 1
4l

2
Bε

mnnm
µρj

l
,nε

jk(5̄k5̄l + 5̄l5̄k)+O(l4B) (10)

where in both equations the functions on the right-hand side are now evaluated in4̄. The
substitution of (9) and (10) into (5) produces the zero-order Hamiltonian as a power series
in l2B . Introducing the harmonic oscillatorJ = 1

2(5̄
2
1+ 5̄2

2), we obtain

H(0) = b(4̄)J + l2BH(0,2)(4̄, 5̄)+O(l4B) (11)

whereH(0,2) is a quite complicated expression, quartic in5̄µ and depending on̄4µ through
b andρij ,k, which may be evaluated by direct substitution.

The adiabatic behaviour of the system in the strong magnetic regime may now be read
in the first term of expansion (11). The fast and slow freedoms decouple up to higher
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order in lB . The fast freedom is frozen in one of the harmonic oscillator eigenstates of the
adiabatic invariantJ . While ‘spinning’, the particle drifts on the surface6. The drifting
is Hamiltonian: the configuration space6 appears now as the phase space of the slow
freedom; the magnetic field normb(4̄1, 4̄2) expressed by the pair of conjugate variables
4̄1 and4̄2 is the Hamiltonian operator governing the slow motion (see [9]).

The situation is substantially analogous to the motion on a plane [7, 10], the metric
appearing only in the evaluation of the magnetic field norm. The crucial difference is that
in a non-trivial geometrical background a constant value ofb does not produce, in general,
the slow variables as exact constants of motion.

4. Coupling to background geometry

We now study the higher-order corrections to the effective motion of the charged particle.
To this task we proceed by the so-called averaging method (see the appendix), that is by
performing a series of near-identity unitary transformations separating, order by order inlB ,
the fast freedom from the slow freedom. First, a little preparation is necessary.

We re-express all the quantities appearing in expansion (4) in terms of the new canonical
variables5̄i and4̄µ. This produces the replacements of all the curved space indicesµ, ν, . . .

by the flat space indicesi, k, . . . . Every ‘general covariant’ indexµ is replaced by a ‘Galilei
covariant’ indexi according to the usual rulesvi = eiµvµ, vi = eiµvµ etc.

As a second step it is useful to work out a few basic geometrical identities
holding in every Darboux frame. These will be precious in bringing the
adiabatic expansion into an explicit covariant form. By taking the derivative of
the relation between the metric determinant and magnetic field norm we obtain
(∂ργ

µκ)γ νλεκλ − (∂ργ νκ)γ µλεκλ = 2b(∂ρb)εµν . Contracting withεµν and rewriting in terms
of flat space indices yields

0
j

ij = −b−1(∂ib) (12)

(which is the usual relation0νµν = ∂µ ln g1/2 evaluated in a Darboux frame). By multiplying
the relation by itself, contracting and rewriting in terms of flat space indices we also obtain

0kij0
k
ij − 0kij0jik − 0jij0kik + 20jii0

k
jk − 0kii0kjj = 0. (13)

No other general relations hold among the various contractions of the Christoffel symbols.
We proceed now by evaluating the contributions produced by the zero-, first- and second-

order terms of (4). Everywhere in what follows equation (13) is used to eliminate0kii0
k
jj in

favour of the other four possible contractions of the Christoffel symbols.

4.1. Second-order contribution fromH(0)

We start the averaging procedure considering the second-order contribution produced by
H(0,2). To this task it is necessary to re-express the non-geometrical quantitiesρi

j
,k in

terms of the spin-connectionωij ,k = (∇ek ei) · ej and the Christoffel symbols0kij . A quick
computation yields

b1/2ρi
j
,k = ωij ,k + 1

2δ
i
j0

l
kl − 0jik. (14)

We recall that the spin-connection is completely antisymmetric in the indicesi and j .
In two dimensions it may, therefore, be rewritten in terms of aU(1) gauge potential
as ωij ,k = ωkεij . A point-dependent rotation by an angleχ(ξ) of the zwei-beineneiµ

produces the gauge transformationωk → ωk + ∂kχ . By replacingρij ,k in H(0,2) according
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to (14), the second-order contribution to the perturbative expansion is readily evaluated by
the formula (A1):

H(0) −→ (−εij0kikωj + 1
40

k
ij0

j

ik + 1
20

j

ij0
k
ik − 3

40
j

ii0
k
jk)J

2

+ 3
160

k
ij0

j

ik − 3
160

j

ii0
k
jk. (15)

Quite surprisingly a term explicitly depending onωk survives.

4.2. Second-order contribution fromH(1)

The first-order term of expansion (4) is cubic in the kinematical momenta,
H(1) = − 1

2b
1/2(∂lγ

ij )εlk5̄i5̄k5̄j . As shown in the appendix, this contributes to the adiabatic
expansion anl2B order term that may be directly evaluated by means of (A2). The only
necessary preparation is that of re-expressing∂kγ

ij in terms of Christoffel symbols. This is
done by rewriting∂κγµν in terms of∂κγ µν in the definition0ρµν and by symmetrizing. The
contraction with the zwei-beinen produces

∂kγ
ij = −(0ijk + 0jik). (16)

By substitution into (A2) we obtain

H(1) −→ (− 3
40

k
ij0

k
ij − 3

40
k
ij0

j

ik − 3
40

j

ij0
k
ik + 3

20
j

ii0
k
jk)J

2

− 3
160

k
ij0

k
ij − 7

160
k
ij0

j

ik + 1
160

j

ij0
k
ik + 3

80
j

ii0
k
jk. (17)

4.3. Second-order contribution fromH(2)

A similar computation has to be performed for the second-order term of the perturbative
expansion,H(2) = 1

4(∂m∂nγ
ij )εmkεnl5̄i5̄k5̄l5̄j . This time it is necessary to re-express the

second-order derivatives of the inverse metric in terms of the Christoffel symbols and their
derivatives. This is simply obtained by taking the derivative of (16)

∂m∂nγ
ij = −∂m0inj − ∂m0jni + 0him0jhn + 0hjm0ihn + 0imh0jnh + 0jmh0inh. (18)

Recalling the definition of the scalar curvatureR = ∂i0
i
jj − ∂i0jij + 0jii0kjk − 0kij0jik,

formula (A1) yields the second-order contribution produced byH(2)

H(2) −→ ( 1
4R − 1

4∂i0
j

ij + 3
40

k
ij0

k
ij + 1

20
k
ij0

j

ik − 1
40

j

ij0
k
ik − 1

20
j

ii0
k
jk)J

2

− 1
16R − 5

16∂i0
j

ij + 3
160

k
ij0

k
ij + 1

40
k
ij0

j

ik + 1
160

j

ij0
k
ik + 1

80
j

ii0
k
jk. (19)

The two terms still containing derivatives of the Christoffel symbols may be expressed in
terms of derivatives of the magnetic field normb and contractions of0kij simply by taking

the derivative of equation (12),∂i0
j

ij = −b−14b + b−2|∇b|2+ 0jii0kjk.

4.4. Effective dynamics

The effective Hamiltonian describing the motion of a charged particle to second order in the
adiabatic parameterlB is finally obtained by adding tob(4̄)J the contributions (15), (17)
and (19) as well as the term−∇b/4b+|∇b|2/8b2. As one must expect, all the contractions
of 0kij except0jij0

k
ik cancel. This may be rewritten in terms of∇b by means of (12). We

obtain

H = bJ

l2B
+
(

1

4
R + ∇b

b
× ω + 1

4

4b
b
− 3

4

|∇b|2
b2

)
J 2− 1

16
R + 1

16

4b
b
− 1

16

|∇b|2
b2
+O(lB).

(20)
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All the functions are expressed by the pair of conjugate operators4̄1 and4̄2. As before
this expression has to be interpreted as the effective Hamiltonian describing the motion of
the slow freedom while the particle is frozen in one of theJ eigenstates. The second term
is the correction which survives in the classical limit while the remaining ones are of a pure
quantal nature.

Even if our computation has been carried out in a Darboux coordinate frame,
equation (20) is explicitly covariant so that we are free to transform back to the original—
arbitrary—coordinatesxµ. The price to pay is that of dealing with non-canonical operators,
the Hamiltonian being evaluated inXµ = xµ(4̄). These ‘guiding centre variables’ in fact
satisfy the non-canonical commutation relations [X2, X1] = il2Bb

−1(X) (see [6, 7]).
The effective dynamics is sensitive to the background scalar curvature. This coupling is

particularly relevant when the magnetic 2-form is proportional—in arbitrary coordinates—
to the volume 2-form,bµν = l−2

B

√
gεµν . gµν and bµν then define a K̈ahler structure

on 6. The particle interacts only with the surface. The magnetic force becomes the
‘geometric gravitational’ force of Cangemi and Jackiw [5]. In the strong magnetic regime
the effective Hamiltonian driving the slow motion is proportional to the scalar curvature.
In the semiclassical regime test particles drift along the line of constant curvature of the
surface6.

The effective dynamics is coupled to the background spin-connection as well. The
coupling is not explicitly gauge invariant. A gauge transformationωk → ωk + ∂kχ adds
the term l2Bb

−1εij (∂ib)(∂jχ)J
2 to the Hamiltonian. Gauge invariance may nevertheless

be restored by the unitary transformationU = eib−1Jχ . The second-order term
−ib−1[b(4̄), χ(4̄)]J 2 produced in this way produces (20) in its original form.

Last but not least, it is worth mentioning that expansion (20) yields the correct flat limit
[6, 7] supplying a full canonical derivation of it.

5. Around a conical singularity

A typical situation of interest in (2+1) gravity is the motion around a conical singularity [11].
As an example we consider, therefore, a charged particle on a conical surface subjected to an
axisymmetric magnetic field decreasing as the inverse of the distance from the vertex. The
problem is explicitly solvable, allowing a check upon our strong magnetic field expansion.

The cone is parametrized by the distanceρ from the vertex, in the range 06 ρ 6 +∞,
and the angleφ, in the range 06 φ 6 2π ; the pointsφ = 0 andφ = 2π are identified. In
these coordinates the metric and magnetic 2-forms take the form

gµν =
(

1 0
0 α2ρ2

)
bµν = 1

l2B

(
0 1
−1 0

)
(21)

whereα is the conical angle; settingα = 1 brings the cone in the Euclidean plane. Although
the curvature ofγµν vanishes, the geometry of the space is non-trivial. The spin-connection
of the surface readsωµ = (0, α) and cannot be gauged away for non-integer values ofα.

We first consider the exact solution. In order to have a deeper insight into the problem we
focus on the classical motion, the discussion of the quantum problem proceeding essentially
along the same lines. Choosing the vector potential asaµ = (0, l−2

B ρ) the Hamiltonian of
the system is written as

H = 1

2
p2
ρ +

1

2α2ρ2

(
pφ − ρ

l2B

)2

. (22)
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Given axial symmetry, the momentumpφ is conserved,{H, pφ} = 0, and it can be replaced
by its constant valueL. The radial motion of the system takes place in the effective
Keplerian potential

Veff(ρ) = L2

2α2ρ2
− L

α2l2Bρ
+ 1

α2l4B
(23)

whereL/α2l2B appears as an attractive Newton constant,L/α as the angular momentum
and the whole spectrum is shifted by the energy 1/α2l4B . The presence of the magnetic
field produces bound states in the system. There is no need to go through the well known
solution of this problem, we focus instead on the qualitative behaviour of the system in
the strong magnetic regime. For small values oflB the minimumρ̄ = Ll2B of the effective
potential becomes extremely deep and narrow.Veff is very well approximated by a harmonic
oscillator centred inρ̄ and with frequencyω = 1/αLl4B . While rotating around the axis of
the cone at a distancēρ, the particle performs very rapid oscillations. The result is that of
a very thin and dense spiral wrapping around an orbit of constant radius. Neglecting the
rapid oscillation, the effective angular velocity may be evaluated by eliminatingL in favour
of ρ̄ in the relationL = pφ = α2ρ2φ̇. This yields

φ̇ ≈ 1

α2l2Bρ̄
. (24)

The angular velocity distribution gives information on the conical angleα.
We now come to the strong magnetic expansion (20). Observe that the coordinatesρ

andφ are already of Darboux type. The rapid oscillations of the particle have obviously
to be identified with the freedom5ρ − 5φ , while the drift on the cone can be identified
with the motion of the guiding centre variablesR = ρ + lB5φ and8 = φ − lB5ρ . The
coordinatesρ, φ and the pair of conjugate variablesR, 8 parametrize two phase-space
surfaces very close to each other and may be confused when orders higher thanlB are
neglected. The Hamiltonian driving the effective motion is immediately obtained from (20)
by evaluating the gradient and Laplacian of the magnetic field normb(ρ) = 1/(αl2Bρ); the
Galilei covariant components of the spin-connection are given byωi = (0, 1/ρ);

Heff = 1

αl2BR
J − 1

2R2
J 2+ · · · . (25)

The angle8 does not appear in the Hamiltonian so thatR is a second constant of motion
besidesJ . The particle moves around the axis at a constant value of the radiusR̄. The angle
8 evolves linearly in time according to the Hamilton equations8̇ = J/αR̄ +O(l2B). The
adiabatic invariantsJ andR are directly related by the conservation of energy. Recalling
that the classical system is in the adiabatic regime for small values of the total energy, we
re-obtain an angular velocity distribution with the behaviour (24).

6. Conclusions

The purpose of this paper was to show how it is possible to set down a systematic canonical
perturbative analysis for the motion of charged particles in a curved background geometry.
This bridges the gap between classical canonical theory and non-canonical averaging
methods traditionally employed in classical analysis. Most importantly, the method allows
a direct discussion of the quantum case extending to this realm the whole classical ‘guiding
centre’ picture. The aim is essentially achieved by means of Darboux transformations,
standard averaging methods and elementary differential geometry. For the sake of simplicity,
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we have restricted our attention to (2+ 1) dimensions. Aside from its importance in the
discussion of the whole (3+ 1)-dimensional problem, the (2+ 1)-dimensional system is
already of a certain applicative importance in itself. An immediate application concerns the
investigation of the non-minimal coupling of Cangemi and Jackiw in a Wick-rotated two-
dimensional gravity. More in general, Hamiltonian (20) gives us immediate information
on how wavefunctions and eigenvalues of an electron in a quantum-Hall-like device are
modified when a small inhomogeneity of the magnetic field or of the thin film geometry
are introduced. The electron behaves like a one-degree-of-freedom system having the
thin film—the spatial surface6—as ‘phase space’. The fast freedom is still frozen in
a harmonic oscillator eigenstate and the discussion of section 3 indicates how the harmonic
oscillator eigenfunctions have to be constructed. The peculiar way the slow freedom couples
to the ‘phase space’ scalar curvature and spin-connection is particularly intriguing and
deserves further investigation. Another important issue concerns the convergence of the
perturbative expansion, which is expected, in general, to be, an asymptotic series. We
conclude by pointing out that considering more spatial dimensions produces other interesting
phenomena—for example, the coupling of the effective dynamics of the new freedoms
with geometry-induced gauge structures—that can be described essentially by the same
formalism. The inclusion of spin is also quite immediate. The restriction to (2+ 1)
dimensions allowed us to single out the effective coupling with the background geometry
without mixing it with phenomena of a different nature. The effective motion in (3+ 1)
dimensions and the inclusion of spin will be considered in future publications.
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Appendix. Averaging around a harmonic oscillator

The introduction of a suitable set of variables reduces the study of the effective motion of
a charged particle to the discussion of a Hamiltonian of the form

H = αJ + εαijk5i5k5j + ε2αijkl5i5k5l5j + · · · .
As in the main text,J = 1

2(5
2
1 + 52

2), and51, 52 are a pair of conjugate variables,
[51,52] = i. ε is a small parameter. The coefficients appearing in the expansion are
allowed to depend on slow variables. The self-adjointness ofH requiresαijk = αjik and
αijkl = αjilk. For a charged particle in a strong magnetic field the coefficientsα, αijk, αijkl ,
. . . are quite complicated expressions involving the spin-connection, the metric tensor and
their derivatives evaluated in the slow guiding centre variables41 and42, [42, 41] = iε2.
Very useful formulae will be worked out in this appendix in order to maximally simplify
the manipulation of these expressions.

Whenε is set equal to zero, the dynamics is described byh(0) ≡ αJ . The system behaves
as a harmonic oscillator with frequency depending on the non-dynamical parameters4i . A
non-zero value ofε turns the perturbation on, making, at the same time, the guiding centre
operators into a couple of conjugate dynamical variables. In order to extract the effective
dynamical content of the theory to the various orders in the perturbative parameterε, we will
subject the system to a series of near-identity unitary transformations. These are chosen in
such a way that the various terms of the perturbative expansion depend on51 and52 only
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thoughJ and its powers. This makesJ into an adiabatic invariant—a quantity conserved up
to higher order of some power ofε—and allows us to identify the Hamiltonian driving the
effective motion of the slow variables in correspondence with every value taken byJ . The
technique is based essentially on the identity eiaH e−ia = H+ i[a,H] − 1

2[a, [a,H]] + · · · ,
wherea = 1+ εa(1)+ ε2a(2)+· · · is the generator of a near-identity unitary transformation.
The self-adjoint operatorsa(1), a(2), etc have to be chosen order by order in such a way that
the desired conditions are matched.

We start by the orderε of the expansion:h(1) ≡ αijk5i5k5j . Note that since
5i5k5j +5j5k5i is completely symmetric in the indicesi, j andk, only the completely
symmetric part ofαijk matters. We can therefore assume the complete symmetry ofαijk.
It is then easy to verify that the choice

a(1) = − 1
3α
−1(αijl + 2δijαhhl)εlk5i5k5j

produces the counterterm i[a(1), h(0)] = −h(1). The first-order term of the transformed
expansion vanishes identically. The operation is nevertheless not painless. The
transformation in fact contributes the second-order termh(1,2) = 1

2i[a(1), h(1)]. This can
be evaluated in

h(1,2) = 3

2

(
αihhαjkl

α
+ α

jhhαikl

α
− α

ijhαklh

α
− 2

δijαhhgαklg

α

)
5i5k5l5j

−α
ijkαijk

α
+ 3

αiikαjjk

α
.

The problem is reduced to the discussion of the second-order term.
We focus therefore onh(2) ≡ αijkl5i5k5l5j . The symmetrization in the various pairs

of indices can still be performed producing contributions of the formαijklεij εkl etc, not
depending on51 and52. Nevertheless, a quite useful expression can already be obtained
by assuming only the symmetrization of the first and second pairs of indices, which is the
case we have to deal with. A brief computation then shows that the right choice to ensure
that the second order of the perturbative expansion depends only on powers ofJ is

a(2) = − 1
8α
−1[αijkh + δij (αkghg + 1

2α
khgg)]εhl5i{5k,5l}5j .

The second-order term i[a(2), h(0)] produced by this transformation combines withh(2) in
such a way to give the final contribution to the perturbative expansion

αijkl5i5k5l5j −→ (αijij + 1
2α

iijj )J 2− 1
4α

ijij + 5
8α

iijj . (A1)

No matter how complicated ish(2), formula (A1) allows us to immediately write down the
contribution to the effective dynamics by evaluating a few contractions of the coefficients
αijkl . The first application of (A1) is the second-order contribution produced byh(1) through
h(1,2). A brief computation yields the quite compact formula

αijk5i5k5j −→ −
(

3

2

αijkαijk

α
+ 9

4

αiikαjjk

α

)
J 2− 5

8

αijkαijk

α
+ 3

16

αiikαjjk

α
. (A2)

Again, the contribution to the effective dynamics produced byh(1) may be obtained through
(A2) by evaluating a few contractions on the square of the coefficientsαijk.
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